Check fruit quality from an IoT device
Sketchnote by Nitya Narasimhan. Click the image for a larger version.
Pre-lecture quiz
Introduction
In the last lesson you learned about image classifiers, and how to train them to detect good and bad fruit. To use this image classifier in an IoT application, you need to be able to capture an image using some kind of camera, and send this image to the cloud to be classified.
In this lesson you will learn about camera sensors, and how to use them with an IoT device to capture an image. You will also learn how to call the image classifier from your IoT device.
In this lesson we'll cover:
- Camera sensors
- Capture an image using an IoT device
- Publish your image classifier
- Classify images from your IoT device
- Improve the model
Camera sensors
Camera sensors, as the name suggests, are cameras that you can connect to your IoT device. They can take still images, or capture streaming video. Some will return raw image data, others will compress the image data into an image file such as a JPEG or PNG. Usually the cameras that work with IoT devices are much smaller and lower resolution than what you might be used to, but you can get high resolution cameras that will rival top end phones. You can get all manner of interchangeable lenses, multiple camera setups, infra-red thermal cameras, or UV cameras.
Most camera sensors use image sensors where each pixel is a photodiode. A lens focuses the image onto the image sensor, and thousands or millions of photodiodes detect the light falling on each one, and record that as pixel data.